Inhibition of wild-type and mutant neuronal nicotinic acetylcholine receptors by local anesthetics.
نویسندگان
چکیده
Inhibition of neuronal nicotinic receptors can be regulated by the presence of specific amino acids in the beta subunit second transmembrane domain (TM2) domain. We show that the incorporation of a mutant beta4 subunit, which contains sequence from the muscle beta subunit at the TM2 6' and 10' positions of the neuronal beta4 subunit, greatly reduces the sensitivity of receptors to the local anesthetic [2-(triethylamino)-N-(2,6-dimethylphenyl)acetamide] (QX-314). Although differing in potency, the inhibition of both wild-type alpha3beta4 receptors and alpha3beta4(6'F10'T) receptors by QX-314 is voltage-dependent and noncompetitive. Interestingly, the potency of the local anesthetic tetracaine for the inhibition of alpha3beta4 and alpha3beta4(6'F10'T) receptors seems unchanged when measured at -50 mV. However, whereas the onset of inhibition of wild-type alpha3beta4 receptors is voltage-dependent and noncompetitive, the onset of inhibition of alpha3beta4(6'F10'T) receptors by tetracaine is unaffected by membrane voltage, and at concentrations < or = 30 microM seems to be competitive with acetylcholine. This may be due to either direct effects of tetracaine at the acetylcholine binding site or preferential block of closed rather than open channels in the mutant receptors. Further analysis of receptors containing the 6' mutation alone suggests that although the 6' mutation is adequate to alter the voltage dependence of tetracaine inhibition, both point mutations are required to produce the apparent competitive effects.
منابع مشابه
Enhanced inhibition of a mutant neuronal nicotinic acetylcholine receptor by agonists: protection of function by (E)-N-methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403).
Inhibition of neuronal nicotinic receptors can be regulated by sequence in the beta subunit second transmembrane domain (TM2). The incorporation of a beta4(6'F10'T) subunit, which contains sequence from the muscle beta subunit at the TM2 6' and 10' positions of the neuronal beta4 subunit, increases the loss of receptor responsiveness after the application of acetylcholine (ACh), nicotine, or 3-...
متن کاملSingle amino acid residue in the extracellular portion of transmembrane segment 2 in the nicotinic alpha7 acetylcholine receptor modulates sensitivity to ketamine.
BACKGROUND Ketamine inhibits the activation of both heteromeric and homomeric nicotinic acetylcholine receptors. The site of molecular interaction is unknown. METHODS The inhibition of alpha7 nicotinic acetylcholine receptors by ketamine was compared to that of 5-hydroxytryptamine-3A (5HT3A) receptors that are resistant to ketamine inhibition in Xenopus laevis oocytes. To determine whether th...
متن کاملPaeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats
Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...
متن کاملThe physiology of the nicotinic acetylcholine receptor and its importance in the administration of anesthesia.
The nicotinic acetylcholine receptor (nAChR) can be found widely throughout the body. Although the activation of this receptor leads to multiple functions dependent on its location within the body and subunit composition, all nAChRs aid in the communication between the extracellular and intracellular compartments. The nAChR is composed of 3 domains: the extracellular, transmembrane, and intrace...
متن کاملA single point mutation confers properties of the muscle-type nicotinic acetylcholine receptor to homomeric alpha7 receptors.
Although the muscle-type and homomeric alpha7-type nicotinic acetylcholine receptors (nAChRs) share many structural features and bind alpha-bungarotoxin with high affinity, several important functional and pharmacological properties distinguish these two major nAChR subtypes. We have shown previously that amino acid sequence in the second transmembrane (TM) domain of the beta subunit is critica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 60 6 شماره
صفحات -
تاریخ انتشار 2001